Pheromone induction promotes Ste11 degradation through a MAPK feedback and ubiquitin-dependent mechanism.

نویسندگان

  • R K Esch
  • B Errede
چکیده

Ste11 is the mitogen-activated protein kinase (MAPK) kinase kinase in the MAPK cascades that mediate mating, high osmolarity glycerol, and filamentous growth responses in Saccharomyces cerevisiae. We show stimulation of the mating pathway by pheromone promotes an accelerated turnover of Ste11 through a MAPK feedback and ubiquitin-dependent mechanism. This degradation is pathway specific, because Ste11 is stable during activation of the high osmolarity glycerol pathway. Because the steady-state amount of Ste11 does not change significantly during pheromone induction, we infer that maintenance of MAPK activation involves repeated cycles in which naive Ste11 is activated and then targeted for degradation. This model predicts that elimination of active Ste11 would rapidly curtail MAPK activation upon attenuation of the upstream signal. This prediction is confirmed by the finding that blocking ubiquitin-dependent Ste11 degradation during pheromone induction abolishes the characteristic attenuation profile for MAPK activation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fus3-Regulated Tec1 Degradation through SCFCdc4 Determines MAPK Signaling Specificity during Mating in Yeast

Signaling specificity is fundamental for parallel mitogen-activated protein kinase (MAPK) cascades that control growth and differentiation in response to different stimuli. In Saccharomyces cerevisiae, components of the pheromone-responsive MAPK cascade activate Fus3 and Kss1 MAPKs to induce mating and Kss1 to promote filamentation. Active Fus3 is required to prevent the activation of the filam...

متن کامل

Functional binding between Gβ and the LIM domain of Ste5 is required to activate the MEKK Ste11

BACKGROUND In the budding yeast Saccharomyces cerevisiae, the pheromones that induce haploid cells of opposite cell types to mate activate the Gbeta and Ggamma subunits of a heterotrimeric G protein. These subunits signal through the PAK kinase Ste20 to activate a mitogen-activated protein (MAP) kinase cascade comprising the MEKK Ste11, the MEK Ste7 and two MAP kinases, Fus3 and Kss1. The pathw...

متن کامل

Pheromone-Dependent Destruction of the Tec1 Transcription Factor Is Required for MAP Kinase Signaling Specificity in Yeast

The yeast MAPK pathways required for mating versus filamentous growth share multiple components yet specify distinct programs. The mating-specific MAPK, Fus3, prevents crosstalk between the two pathways by unknown mechanisms. Here we show that pheromone signaling induces Fus3-dependent degradation of Tec1, the transcription factor specific to the filamentation pathway. Degradation requires Fus3...

متن کامل

The MAP kinase Fus3 associates with and phosphorylates the upstream signaling component Ste5.

Activation of the Saccharomyces cerevisiae MAP kinase Fus3 is thought to occur via a linear pathway involving the sequential action of three proteins: Ste5, a protein of unknown function, Ste11, a MAPKK kinase homolog, and Ste7, a MAPK kinase homolog which phosphorylates and activates Fus3. In this report, we present evidence for a novel mechanism of Fus3 activation that involves a direct assoc...

متن کامل

The MAPKKKs Ste11 and Bck1 jointly transduce the high oxidative stress signal through the cell wall integrity MAP kinase pathway

Oxidative stress stimulates the Rho1 GTPase, which in turn induces the cell wall integrity (CWI) MAP kinase cascade. CWI activation promotes stress-responsive gene expression through activation of transcription factors (Rlm1, SBF) and nuclear release and subsequent destruction of the repressor cyclin C. This study reports that, in response to high hydrogen peroxide exposure, or in the presence ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 99 14  شماره 

صفحات  -

تاریخ انتشار 2002